Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38665074

RESUMO

Objective: Previous research reported that dietary addition with phytosterols improved the energy utilisation of the rumen microbiome, suggesting its potential to alleviate the negative energy balance of perinatal cows. This experiment aimed to explore the effects of feeding phytosterols on the metabolic status of perinatal cows through plasma metabolomics and faecal bacteria metabolism. Methods: Ten perinatal Holstein cows (multiparous, 2 parities) with a similar calving date were selected four weeks before calving. After 7 days for adaptation, cows were allocated to two groups (n=5), which respectively received the basal rations supplementing commercial phytosterols at 0 and 200 mg/d during a 42-day experiment. The milk yield of each cow was recorded daily after calving. On days 1 and 42, blood and faeces samples were all collected from perinatal cows before morning feeding for analysing plasma biochemicals and metabolome, and faecal bacteria metabolism. Results: Dietary addition with phytosterols at 200 mg/d had no effects on plasma cholesterol and numerically increased milk yield by 1.82 kg/d (p>0.10) but attenuated their negative energy balance in perinatal cows as observed from the significantly decreased plasma level of ß-hydroxybutyric acid (p=0.002). Dietary addition with phytosterols significantly altered 12 and 15 metabolites (p<0.05) within the plasma and faeces of perinatal cows, respectively. Of these metabolites, 5 upregulated plasma fatty acids indicated an improved energy status (i.e., C18:1T, C14:0, C17:0, C18:0, and C16:0). Milk yield negatively correlated with plasma concentrations of ketone bodies (p=0.035) and 5-methoxytryptamine (p=0.039). Furthermore, dietary addition with phytosterols at 200 mg/d had no effects on fermentation characteristics and bacterial diversity of cow faeces (p>0.10) but improved potentially beneficial bacteria such as Christensenellaceae family (p<0.05) that positively correlated with feed efficiency. Conclusion: Dietary addition with phytosterols at 200 mg/d could effectively improve the energy status in perinatal cows by attenuating their negative energy balance.

2.
J Exp Bot ; 74(12): 3613-3629, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36928543

RESUMO

In flowering plants, floral induction signals intersect at the shoot apex to modulate meristem determinacy and growth form. Here, we report a single-nucleus RNA sequence analysis of litchi apical buds at different developmental stages. A total of 41 641 nuclei expressing 21 402 genes were analyzed, revealing 35 cell clusters corresponding to 12 broad populations. We identify genes associated with floral transition and propose a model that profiles the key events associated with litchi floral meristem identity by analyzing 567 identified floral meristem cells at single cell resolution. Interestingly, single-nucleus RNA-sequencing data indicated that all putative FT and TFL1 genes were not expressed in bud nuclei, but significant expression was detected in bud samples by RT-PCR. Based on the expression patterns and gene silencing results, we highlight the critical role of LcTFL1-2 in inhibiting flowering and propose that the LcFT1/LcTFL1-2 expression ratio may determine the success of floral transition. In addition, the transport of LcFT1 and LcTFL1-2 mRNA from the leaf to the shoot apical meristem is proposed based on in situ and dot-blot hybridization results. These findings allow a more comprehensive understanding of the molecular events during the litchi floral transition, as well as the identification of new regulators.


Assuntos
Flores , Litchi , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Folhas de Planta/metabolismo , Análise de Sequência de RNA/métodos , Meristema , Regulação da Expressão Gênica de Plantas
3.
Physiol Plant ; 175(1): e13860, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36683140

RESUMO

Anthocyanins are health-promoting compounds with strong antioxidant properties that play important roles in disease prevention. Litchi chinensis Sonn. is a well-known and economically significant fruit due to its appealing appearance and nutritional value. The mature pericarp of litchi is rich in anthocyanins, whereas the aril (flesh) has an extremely low anthocyanin content. However, the mechanism of anthocyanin differential accumulation in litchi pericarp and aril remained unknown. Here, metabolome and transcriptome analysis were performed to unveil the cause of the deficiency of anthocyanin biosynthesis in litchi aril. Numerous anthocyanin biosynthesis-related metabolites and their derivatives were found in the aril, and the levels of rutin and (-)-epicatechin in the aril were comparable to those found in the pericarp, while anthocyanin levels were negligible. This suggests that the biosynthetic pathway from phenylalanine to cyanidin was present but that a block in cyanidin glycosylation could result in extremely low anthocyanin accumulation in the aril. Furthermore, 54 candidate genes were screened using weighted gene co-expression network analysis (WGCNA), and 9 genes (LcUFGT1, LcGST1, LcMYB1, LcSGR, LcCYP75B1, LcMATE, LcTPP, LcSWEET10, and LcERF61) might play a significant role in regulating anthocyanin biosynthesis. The dual-luciferase reporter (DLR) assay revealed that LcMYB1 strongly activated the promoters of LcUFGT1, LcGST4, and LcSWEET10. The results imply that LcMYB1 is the primary qualitative gene responsible for the deficiency of anthocyanin biosynthesis in litchi aril, which was confirmed by a transient transformation assay. Our findings shed light on the molecular mechanisms underlying tissue-specific anthocyanin accumulation and will help developing new red-fleshed litchi germplasm.


Assuntos
Antocianinas , Litchi , Antocianinas/metabolismo , Litchi/genética , Litchi/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Metaboloma , Transcriptoma , Regulação da Expressão Gênica de Plantas
4.
Regen Biomater ; 10: rbac082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683759

RESUMO

Silver has been widely used for surface modification to prevent implant-associated infections. However, the inherent cytotoxicity of silver greatly limited the scope of its clinical applications. The construction of surfaces with both good antibacterial properties and favorable cytocompatibility still remains a challenge. In this study, a structurally homogeneous dopamine-silver (DA/Ag) nanocomposite was fabricated on the implant surface to balance the antibacterial activity and cytocompatibility of the implant. The results show that the DA/Ag nanocomposites prepared under the acidic conditions (pH = 4) on the titanium surface are homogeneous with higher Ag+ content, while an obvious core (AgNPs)-shell (PDA) structure is formed under neutral (pH = 7) and alkaline conditions (pH = 10), and the subsequent heat treatment enhanced the stability of PDA-AgNPs nanocomposite coatings on porous titanium. The antibacterial test, cytotoxicity test, hypodermic implantation and osteogenesis test revealed that the homogeneous PDA-AgNPs nanocomposite coating achieved the balance between the antibacterial ability and cytocompatibility, and had the best outcomes for soft tissue healing and bone formation around the implants. This study provides a facile strategy for preparing silver-loaded surfaces with both good antibacterial effect and favorable cytocompatibility, which is expected to further improve the therapeutic efficacy of silver composite-coated dental implants.

5.
Sci China Life Sci ; 66(5): 1108-1118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462108

RESUMO

The sesquiterpene alpha-bisabolol is the predominant active ingredient in essential oils that are highly valued in the cosmetics industry due to its wound healing, anti-inflammatory, and skin-soothing properties. Alpha-bisabolol was thought to be restricted to Compositae plants. Here we reveal that alpha-bisabolol is also synthesized in rice, a non-Compositae plant, where it acts as a novel sesquiterpene phytoalexin. Overexpressing the gene responsible for the biosynthesis of alpha-bisabolol, OsTPS1, conferred bacterial blight resistance in rice. Phylogenomic analyses revealed that alpha-bisabolol-synthesizing enzymes in rice and Compositae evolved independently. Further experiments demonstrated that the natural variation in the disease resistance level was associated with differential transcription of OsTPS1 due to polymorphisms in its promoter. We demonstrated that OsTPS1 was regulated at the epigenetic level by JMJ705 through the methyl jasmonate pathway. These data reveal the cross-family accumulation and regulatory mechanisms of alpha-bisabolol production.


Assuntos
Chrysanthemum , Óleos Voláteis , Sesquiterpenos , Chrysanthemum/genética , Chrysanthemum/metabolismo , Resistência à Doença/genética , Epigênese Genética , Sesquiterpenos/metabolismo
6.
Cells ; 11(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36497177

RESUMO

Recent advances in developmental biology have been made possible by using multi-omic studies at single cell resolution. However, progress in plants has been slowed, owing to the tremendous difficulty in protoplast isolation from most plant tissues and/or oversize protoplasts during flow cytometry purification. Surprisingly, rapid innovations in nucleus research have shed light on plant studies in single cell resolution, which necessitates high quality and efficient nucleus isolation. Herein, we present efficient nuclei isolation protocols from the leaves of ten important plants including Arabidopsis, rice, maize, tomato, soybean, banana, grape, citrus, apple, and litchi. We provide a detailed procedure for nucleus isolation, flow cytometry purification, and absolute nucleus number quantification. The nucleus isolation buffer formula of the ten plants tested was optimized, and the results indicated a high nuclei yield. Microscope observations revealed high purity after flow cytometry sorting, and the DNA and RNA quality extract from isolated nuclei were monitored by using the nuclei in cell division cycle and single nucleus RNA sequencing (snRNA-seq) studies, with detailed procedures provided. The findings indicated that nucleus yield and quality meet the requirements of snRNA-seq, cell division cycle, and likely other omic studies. The protocol outlined here makes it feasible to perform plant omic studies at single cell resolution.


Assuntos
Arabidopsis , Núcleo Celular , Núcleo Celular/metabolismo , Protoplastos , Arabidopsis/genética , Plantas/genética , Análise de Sequência de RNA
7.
BMC Plant Biol ; 22(1): 471, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192710

RESUMO

BACKGROUND: Tea plant (Camellia sinensis (L.) O. Kuntze) is an important economic tea crop, but flowering will consume a lot of nutrients of C. sinensis, which will seriously affect the nutritional growth of C. sinensis. However, there are few studies on the development mechanism of C. sinensis flower, and most studies focus on a single C. sinensis cultivar. RESULTS: Here, we identified a 92-genes' C. sinensis flower development core transcriptome from the transcriptome of three C. sinensis cultivars ('BaiYe1', 'HuangJinYa' and 'SuChaZao') in three developmental stages (bud stage, white bud stage and blooming stage). In addition, we also reveal the changes in endogenous hormone contents and the expression of genes related to synthesis and signal transduction during the development of C. sinensis flower. The results showed that most genes of the core transcriptome were involved in circadian rhythm and autonomous pathways. Moreover, there were only a few flowering time integrators, only 1 HD3A, 1 SOC1 and 1 LFY, and SOC1 played a dominant role in the development of C. sinensis flower. Furthermore, we screened out 217 differentially expressed genes related to plant hormone synthesis and 199 differentially expressed genes related to plant hormone signal transduction in C. sinensis flower development stage. CONCLUSIONS: By constructing a complex hormone regulation network of C. sinensis flowering, we speculate that MYC, FT, SOC1 and LFY play key roles in the process of endogenous hormones regulating C. sinensis flowering development. The results of this study can a provide reference for the further study of C. sinensis flowering mechanism.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Chá , Transcriptoma
8.
Plants (Basel) ; 11(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079615

RESUMO

Nitric oxide (NO), as a signal molecule, is involved in the mediation of heavy-metal-stress-induced physiological responses in plants. In this study, we investigated the effect of NO on Camellia sinensis pollen tubes exposed to aluminum (Al) stress. Exogenous application of the NO donor decreased the pollen germination rate and pollen tube length and increased the malondialdehyde (MDA) content and antioxidant enzyme activities under Al stress. Simultaneously, the NO donor effectively increased NO content in pollen tube of C. sinensis under Al stress and could aggravate the damage of Al3+ to C. sinensis pollen tubes by promoting the uptake of Al3+. In addition, application of the NO-specific scavenger significantly alleviated stress damage in C. sinensis pollen tube under Al stress. Moreover, 18 CsALMT members from a key Al-transporting gene family were identified, which could be divided into four subclasses. Pearson correlation analysis showed the expression level of CsALMT8 showed significant positive correlation with the Al3+ concentration gradient and NO levels, but a significant negative correlation with pollen germination rate and pollen tube length. The expression level of CsALMT5 was negatively correlated with the Al3+ concentration gradient and NO level, and positively correlated with pollen germination rate and pollen tube length. The expression level of CsALMT17 showed a significant negative correlation with Al3+ concentration and NO content in pollen tubes, but significant positive correlation with pollen germination rate and pollen tube length. In conclusion, a complex signal network regulated by NO-mediated CsALMTs revealed that CsALMT8 was regulated by environmental Al3+ and NO to assist Al3+ entry into pollen tubes; CsALMT5 might be influenced by the Al3+ signal, stimulate malate efflux in vacuoles and chelate with Al3+ to detoxify Al in C. sinensis pollen tube.

9.
Appl Environ Microbiol ; 88(15): e0099222, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35856688

RESUMO

Phytosterols are natural steroids in plants, possessing bioactivities that could modify gut microbes. This experiment aimed to evaluate the effects of feeding phytosterols on the community structures and metabolic functions of the rumen microbiota in perinatal cows. Perinatal cows were supplied with 0 mg (control) or 200 mg (treatment) phytosterols per day. Multiomic analyses were used to analyze the community structures and metabolic functions of rumen microbiota. Results showed that dietary phytosterols increased the copy number of total ruminal bacteria, the concentration of microbial crude protein, and the molar percentage of propionate in the rumen of perinatal cows but had no effects on the alpha diversity of ruminal bacteria. However, they enriched three genera (i.e., Fibrobacter) and seven species (i.e., Fibrobacter succinogenes) within active ruminal bacteria. Metatranscriptomic and metabolomic analyses revealed that dietary phytosterols enhanced the pathway of glycolysis and the family of glycoside hydrolase 13 but depressed the citrate cycle and pyruvate metabolism and several pathways of amino acid biosynthesis. In conclusion, dietary addition of phytosterols improved the growth of ruminal bacteria and changed rumen fermentation by modifying the rumen microbiome and the energy metabolism pathways, which would be beneficial for the energy utilization of perinatal cows. IMPORTANCE Perinatal cows suffer serious physiological stress and energy deficiency. Phytosterols have bioactive functions for gut microbes. However, little knowledge is available on their effects on rumen microbiota and rumen fermentation. Results of the present experiment revealed that dietary supplementation of phytosterols could improve the growth of ruminal bacteria and changed the rumen fermentation to provide more glycogenetic precursors for the perinatal cows by modifying the ruminal bacteria community and altering the energy metabolism pathways of the rumen microbiota. These findings suggest that dietary supplementation of phytosterols would be beneficial for perinatal cows suffering from a negative energy balance.


Assuntos
Microbioma Gastrointestinal , Microbiota , Fitosteróis , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Fermentação , Lactação , Fitosteróis/metabolismo , Fitosteróis/farmacologia , Rúmen/microbiologia
10.
Gene ; 821: 146318, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181507

RESUMO

RAC/ROP gene (RACs) is a plant-specific small GTPases. RACs play an irreplaceable role in the tissue dynamics of cytoskeleton, vesicle transport and hormone signal transmission in plants. In the present study, a novel gene from RACs family, CsRAC1, was identified from tea [Camellia sinensis (L.) O. Kuntze]. CsRAC1 contained a 591-bp open reading frame and encoded a putative protein of 197 amino acids. Subcellular localization analysis in leaves of transgenic tobacco and root tips of Arabidopsis thaliana showed that CsRAC1 targeted the nucleus and cell membrane. The expression of CsRAC1 induced by abiotic stresses such as cold, heat, drought, salt and abscisic acid has also been verified by RT-qPCR. Further verification of biological function of CsRAC1 showed that overexpression of CsRAC1 increased the sensitivity of A. thaliana to salt stress, improved the tolerance of mature A. thaliana to drought stress, and enhanced the inhibition of ABA on seed germination of A. thaliana. In addition, the antioxidant system regulated by CsRAC1 mainly worked in mature A. thaliana. The results indicate that CsRAC1 is involved in the response of C. sinensis to salt, drought stress and ABA signaling pathway.


Assuntos
Ácido Abscísico/farmacologia , Camellia sinensis/crescimento & desenvolvimento , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/enzimologia , Camellia sinensis/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fases de Leitura Aberta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico
11.
BMC Oral Health ; 22(1): 33, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144590

RESUMO

BACKGROUND: The aim of this study was to evaluate anterior teeth movement with different archwire planes and archwire sizes during space closure with and without miniscrew in sliding mechanics. METHODS: A 3D finite element method was applied to simulate anterior teeth retraction with and without miniscrew and power arm. Initial displacements and pressure stresses of periodontal tissue in anterior teeth were calculated after the teeth were applied with retraction forces with different archwire planes and archwire sizes. RESULTS: High archwire plane showed better torque control of anterior teeth in both sliding mechanics. With intramaxillary retraction, anterior teeth showed lingual tipping and extrusion movement, whereas larger-size archwires did not reduce it. In miniscrew sliding mechanics, anterior teeth showed labial tipping and intrusion movement. Compared with intramaxillary retraction, the retraction force produced less pressure stress on periodontal tissue in miniscrew sliding mechanics with long power arm. CONCLUSIONS: Higher archwire plane is conducive to anterior teeth torque control. In order to achieve the bodily movement of the anterior teeth during space closure, it is more important to choose the appropriate method (miniscrew sliding mechanics with long power arm), instead of increasing the size of the archwire.


Assuntos
Ortodontia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Incisivo , Fios Ortodônticos , Técnicas de Movimentação Dentária/métodos
12.
J Sci Food Agric ; 102(7): 2893-2902, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34755346

RESUMO

BACKGROUND: Water-soluble fluoride (WS-F) can be absorbed directly by tea plants from soil and comprises a major source of dietary F in tea consumers. To reveal the WS-F accumulation in tea leaves and assess WS-F health risks, 70 sets of samples including tea leaves at three maturity stages and corresponding topsoil were collected from Xinyang, China. The WS-F contents in tea samples and pH values in soil samples were determined. RESULTS: The contents of WS-F in tea leaves exhibited a positive correlation with leaf maturity. The contents of WS-F in tea leaves showed a positive correlation with WS-F contents in the soil as the soil pH value exceeds 5. All the bud with two leaves samples, 84.29% of the third to sixth leaves samples, and 78.57% mature leaves samples in 5-min infusion tend to be no health threat. The leaching characteristics of WS-F from tea leaves were influenced by the leaf maturity and soaking time. CONCLUSION: Taking measures to control pH and WS-F concentration of plantations soil, as well as drinking tea infusion made from young leaves or reducing soaking time could decrease the WS-F health risk. © 2021 Society of Chemical Industry.


Assuntos
Camellia sinensis , Solo , Camellia sinensis/química , China , Fluoretos/análise , Folhas de Planta/química , Medição de Risco , Solo/química , Chá/química , Água/análise
13.
Front Bioeng Biotechnol ; 9: 783816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950645

RESUMO

Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.

14.
BMC Genomics ; 22(1): 761, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696727

RESUMO

BACKGROUND: Xyloglucan endotransglycosylase/hydrolases (XTH) can disrupt and reconnect the xyloglucan chains, modify the cellulose-xyloglucan complex structure in the cell wall to reconstruct the cell wall. Previous studies have reported that XTH plays a key role in the aluminum (Al) tolerance of tea plants (Camellia sinensis), which is a typical plant that accumulates Al and fluoride (F), but its role in F resistance has not been reported. RESULTS: Here, 14 CsXTH genes were identified from C. sinensis and named as CsXTH1-14. The phylogenetic analysis revealed that CsXTH members were divided into 3 subclasses, and conserved motif analysis showed that all these members included catalytic active region. Furthermore, the expressions of all CsXTH genes showed tissue-specific and were regulated by Al3+ and F- treatments. CsXTH1, CsXTH4, CsXTH6-8 and CsXTH11-14 were up-regulated under Al3+ treatments; CsXTH1-10 and CsXTH12-14 responded to different concentrations of F- treatments. The content of xyloglucan oligosaccharide determined by immunofluorescence labeling increased to the highest level at low concentrations of Al3+ or F- treatments (0.4 mM Al3+ or 8 mg/L F-), accompanying by the activity of XET (Xyloglucan endotransglucosylase) peaked. CONCLUSION: In conclusion, CsXTH activities were regulated by Al or F via controlling the expressions of CsXTH genes and the content of xyloglucan oligosaccharide in C. sinensis roots was affected by Al or F, which might finally influence the elongation of roots and the growth of plants.


Assuntos
Alumínio , Camellia sinensis , Fluoretos , Glicosiltransferases/genética , Hidrolases , Filogenia
15.
Biomolecules ; 11(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201466

RESUMO

Nitric oxide (NO) as a momentous signal molecule participates in plant reproductive development and responds to various abiotic stresses. Here, the inhibitory effects of the NO-dominated signal network on the pollen tube growth of Camellia sinensis under low temperature (LT) were studied by microRNA (miRNA) omics analysis. The results showed that 77 and 71 differentially expressed miRNAs (DEMs) were induced by LT and NO treatment, respectively. Gene ontology (GO) analysis showed that DEM target genes related to microtubules and actin were enriched uniquely under LT treatment, while DEM target genes related to redox process were enriched uniquely under NO treatment. In addition, the target genes of miRNA co-regulated by LT and NO are only located on the cell membrane and cell wall, and most of them are enriched in metal ion binding and/or transport and cell wall organization. Furthermore, DEM and its target genes related to metal ion binding/transport, redox process, actin, cell wall organization and carbohydrate metabolism were identified and quantified by functional analysis and qRT-PCR. In conclusion, miRNA omics analysis provides a complex signal network regulated by NO-mediated miRNA, which changes cell structure and component distribution by adjusting Ca2+ gradient, thus affecting the polar growth of the C. sinensis pollen tube tip under LT.


Assuntos
Camellia sinensis/genética , Temperatura Baixa , MicroRNAs/genética , Óxido Nítrico/farmacologia , Tubo Polínico/genética , Análise de Sequência de RNA/métodos , Camellia sinensis/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , MicroRNAs/metabolismo , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo
16.
Adv Mater ; 33(21): e2008424, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33876466

RESUMO

The propensity of Zn-metal anodes to form non-uniform or dendritic electrodeposits is bound up with the nature of the electrode surface. However, the effect of surface structure on the inherent nucleation and deposition of Zn is not yet well understood. Here, the surface structure of a Zn-metal anode is reconstructed with Sn-crystal textures via a facile chemical displacement reaction. Compared to the bare Zn, the high-affinity Zn binding sites of Sn afford lower deposition energy barrier, which promotes deposition kinetics. What is more, a Sn-textured surface with moderate Zn affinity but high average surface energy ensures a better wettability from the deposits, leading to the lateral growth of Zn crystals. The resultant Sn-textured Zn-metal anode exhibits an extremely low voltage hysteresis of 20 mV and achieves a prolonged cycling stability over 500 h cycles without dendrite formation. This work provides new insights into the crystal-texture-dependent Zn electrodeposition process and offers direction for direct surface texturing to better stabilize Zn-metal anodes with improved reversibility.

17.
Funct Integr Genomics ; 20(4): 497-508, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31897824

RESUMO

The voltage-gated chloride channel (CLC) superfamily is one of the most important anion channels that is widely distributed in bacteria and plants. CLC is involved in transporting various anions such as chloride (Cl-) and fluoride (F-) in and out of cells. Although Camellia sinensis is a hyper-accumulated F plant, there is no studies on the CLC gene superfamily in the tea plant. Here, 8 CLC genes were identified from C. sinensis and they were named CsCLC1-8. The structure of CsCLC genes and the proteins were not conserved; the number of exons varied from 3 to 24, and the number of transmembrane domains contained 2 to 10. Furthermore, phylogenetic analysis revealed that CsCLC4-8 in subclass I contained the typical conserved domains GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), and CsCLC1-3 in subclass II did not contain any of the three conserved residues. We measured the expression levels of CsCLCs in roots, stems and leaves to assess the responses to different concentrations of Cl- and F-. The result indicated that CsCLCs participated in subfunctionalization in response to Cl- and F-, and CsCLC1-3 was more sensitive to F- treatments than CsCLC4-8, CsCLC6 and CsCLC7 may participate in absorption and long-distance transport of Cl-.


Assuntos
Camellia sinensis/genética , Canais de Cloreto/genética , Proteínas de Plantas/genética , Camellia sinensis/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Sequência Conservada , Genoma de Planta , Família Multigênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Domínios Proteicos
18.
ACS Omega ; 4(19): 18370-18380, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720539

RESUMO

Biomaterial-associated infection and lack of sufficient osseointegration contribute to a large proportion of implant failures. Therefore, antibacterial and osseointegration-accelerating properties are important in implant surface design. In this study, a micro/nanoporous titanium surface was prepared through alkaline and heat treatments, covalently conjugated with aminosilane. Then, varying amounts of chlorhexidine (CHX) were covalently grafted onto the aminosilane-modified surface via glutaraldehyde to obtain different CHX-grafted surfaces. These as-prepared surfaces were evaluated in terms of their surface chemical composition, surface topography, CHX grafting amount, antibacterial activity, and osteoblast compatibility. The results showed that the CHX grafting amount increased with increasing CHX concentrations, leading to better antibacterial activity. CHX (1 mg/mL) resulted in the best antibacterial surface, which still retained good osteoblast compatibility. Meanwhile, competitive bacterial-cell adhesion analysis demonstrated that this surface has great value for osteoblast adhesion at the implant-bone interface even in the presence of bacteria. This effortless, easily performed, and eco-friendly technique holds huge promise for clinical applications.

19.
ACS Omega ; 4(21): 19469-19477, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31763571

RESUMO

Iron stents, with superior mechanical properties and controllable degradation behavior, have potential for use as feasible substitutes for nondegradable stents in the treatment of coronary artery occlusion. However, corrosion renders the iron surface hard to modify with biological molecules to accelerate endothelialization and solve restenosis. The objective of this study is to demonstrate the feasibility of using endothelial progenitor cells (EPCs) to rapidly adhere onto iron surfaces with the assistance of anti-CD34-modified magnetic nanoparticles. Transmission electron microscopy, Fourier transform infrared spectroscopy, Thermogravimetric analysis, XRD, and anti-CD34 immunofluorescence suggested that anti-CD34 and citric acid were successfully modified onto Fe3O4, and Prussian blue staining demonstrated the selectivity of the as-prepared nanoparticles for EPCs. Under an external magnetic field (EMF), numerous nanoparticles or EPCs attached onto the surface of iron pieces, particularly the side of the iron pieces exposed to flow conditions, because iron could be magnetized under the EMF, and the magnetized iron has an edge effect. However, the uniform adhesion of EPCs on the iron stent was completed because of the weakening edge effect, and the sum of adherent EPCs was closely linked with the magnetic field (MF) intensity, which was validated by the complete covering of EPCs on the iron stent upon exposure to a 300 mT EMF within 3 h, whereas almost no cells were observed on the iron stent without an EMF. These results verify that this method can efficiently promote EPC capture and endothelialization of iron stents.

20.
J Agric Food Chem ; 67(21): 5997-6006, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31056906

RESUMO

A fluoride export gene ( CsFEX) was newly found and isolated from Camellia sinensis, and its functions in detoxifying F were investigated in transgenic Escherichia coli and Arabidopsis thaliana. CsFEX contains two crcB domains, which is the typical structure in plants. The expression of CsFEX in C. sinensis is tissue-specific and related to maturity of leaves, and its expression is significantly induced by F treatments in different tissues of C. sinensis, particularly in leaves. Additionally, the growth of C. sinensis, E. coli, and A. thaliana can all be inhibited by F treatment. However, the growth of CsFEX-overexpression E. coli was increased with lower F content under F treatment compared to the control. Similarly, the germination and growth of CsFEX-overexpression A. thaliana were enhanced with lower F content under F treatment compared to the wild type. CsFEX relieves F toxicity in the transgenic E. coli and A. thaliana by alleviating F accumulation.


Assuntos
Arabidopsis/metabolismo , Camellia sinensis/genética , Escherichia coli/metabolismo , Fluoretos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Transporte Biológico , Camellia sinensis/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fluoretos/toxicidade , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...